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A model of the diffusive interface in double-diffusive convection at  high Rayleigh 
number is proposed. The interface is assumed to  have a double structure: two margin- 
ally stable boundary layers from which blobs or thermals arise on the outer edges of 
the interface, separated by a diffusive core across which all transport takes place by 
molecular diffusion. The model is time-independent and comparison is made with 
unsteady ‘run-down ’ experiments on the assumption that the experiments run down 
through a sequence of equilibrium states each of which can be considered separately. 
The model predicts a constant ratio of the buoyancy fluxes of the two components 
a t  a value equal to the square root of the rat,io of their molecular diffusivities, and 
individual fluxes in reasonable agreement with the available experimental data. Some 
time-dependent features of the model are also examined. 

1. Introduction 
Convective motions can occur in a stably stratified fluid when there are two com- 

ponents contributing to the density which diffuse at  different rates. This convection, 
called double-diffusive convection, takes different forms depending on the distribution 
of the two components in the fluid. One component must be unstably distributed in 
the fluid (i.e. it must cause the density to increase upwards) to provide a source of 
energy for the motion whilst the other component must be stably distributed to 
maintain an overall stable density stratification. If the slower-diffusing component is 
unstably distributed, the convection takes the form of tall, thin convection cells 
called ‘fingers’. On the other hand, if the faster-diffusing component is unstably 
distributed, the convection occurs in a manner more similar to thermal convection: 
this case is called ‘diffusive’. 

Theories of these convective motions have dealt primarily with the extended 
BQnard problem of motion between two horizontal boundaries with either the fluxes 
or the values of the two components specified a t  these two boundaries. A study of 
the linear stability theory for such systems has been made (Baines & Gill 1969) as 
well as calculations on some aspects of the finite amplitude motions (Veronis 1965, 
1968; Straus 1972; Huppert & Moore 1976). A comparison of these theories with 
experiment is very difficult for the following reason. In  order to reproduce, or even 
approximate, the theoretical models in the laboratory it is necessary to specify either 
fluxes or values of two stratifying compopents a t  the top and bottom of the working 
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section of the fluid. In  BBnard convection, when only one component is required, it is 
possible to use heat to stratify the fluid and it is relatively simple to maintain either 
constant temperatures on the boundaries or constant heat flux through the system. 
I n  the case of double-diffusive convection, however, the search for two stratifying 
components which can be used in this way has so far proved fruitless. Heat has often 
been used as one component (Turner 1965; Linden 1973). The other component has 
almost invariably been a solute and no method has yet been found of satisfactorily 
adding a solute a t  one boundary and removing it a t  the other. 

The simplest experiment to set up is one in which the fluid is stratified into two 
uniform layers, containing different amounts of the two components, separated by an 
interface. Generally, the system is set up in this configuration and then allowed to 
‘run down’ as the energy is removed from the unstably distributed component 
(Turner 1965; Linden 1973; Shirtcliffe 1973). It is thought that the system runs down 
through a series of ‘ quasi-equilibrium’ states and that the properties of the convection 
are, a t  any given time, the same as would be observed in a steady state with the 
values of the flow parameters as observed a t  that time. Apart from the time dependence 
and the different initial stratifications used in the experiments, there is one other 
essential difference between the experiments and the theories; namely the typical 
values of the Rayleigh numbers of the convection are much higher than those to 
which the theories apply. 

Consequently, it is worthwhile to try and model the experiments more closely than 
the BBnard-type models do. Linden (1973) has suggested a model for the ‘finger’ 
interface based on the idea of the system running down through a series of quasi- 
equilibrium states. Reasonable agreement was found between the theory and the 
experiments. Here the case of a ‘diffusive’ interface is examined. 

A feature of the convection is that the motions in the two layers above and below 
the interface are driven by thermals originating at the interface, in a manner very simi- 
lar to the thermals observed above a heated flat plate at high Rayleigh number. The 
theory of Howard (1964) for the latter situation is extended to the diffusive interface. 
The remainder of this paper describes this model and compares it with the relevant 
experiments. For further information on the general nature and properties of the 
convection see Turner (1973, chap. 8). 

2. A steady model of the diffusive interface 
The two components stratifying the fluid are denoted by T and S with molecular 

diffusivities K,, and K,, respectively. For definiteness we shall denote by S the 
component with the smaller diffusivity, i.e. 7 G K,/K, < 1. Further, we shall let T 
and S represent the magnitudes of the two components in density units. Then, 
assuming a linear equation of state, the density p is given by 

p = p o + T + S ,  (2.1) 

where po is the density of the fluid in the absence of T and S.  If the subscripts u and 1 
refer to the upper and lower layers, respectively, a diffusive interface exists between 
layers where 

The third inequality ensures that the fluid is stably stratified. 

(2.2) < T,, S, > S,, T,+S, > T,+S,. 
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The experiments are modelled by supposing that the system is in a steady state, 
with differences AT and AS in T and S maintained across the interface. That is, 
AT = 1 - TuI and AS = IS, - Sul. A measure of the stability of the interface is given by 
the density ratio R, = AS/AT; for the lower layer to be a t  least as dense as the upper 
layer we require R, 1 .  For simplicity, we shall suppose that the depth D of each layer 
is the same, 

When a two-layer system with the stratification implied by ( 2 . 2 )  is set up in the 
laboratory it is observed that convective motions are produced in each layer. The 
source of energy for this motion is the unstable distribution of the T field. The con- 
vective motion in the two layers is driven by the release of buoyant elements from the 
vicinity of the density interface which separates the two layers. These buoyant 
elements keep the two layers fairly well mixed, so to a good approximation the 
horizontal averages of T and S in the t w o  layers are independent of depth. 

The essential feature of the model proposed here to describe this system is that the 
interface consists of three parts: a central diffusive core, across which transport of 
T and R takes place by molecular diffusion alone, and two identical unstable boundary 
layers, one above and one below the core, from which the buoyant elements arise. 
Good experimental evidence for a central diffusive core has been provided by Shirt- 
cliffe (1973)  from examination of a sugar-salt interface. Each boundary layer grows 
by diffusion. Because the T field is unstable and K ,  > K,, the outer edge of each 
boundary layer is gravitationally unstable, as the stabilizing effect of the S field is 
restricted to a thinner region near the core. It is envisaged that at  some time t = t , ,  
say, the boundary layer breaks down and a buoyant element is released. All the 
buoyant fluid in the boundary layer is removed and the boundary layer, now thin, 
begins to grow again. This cyclic mechanism was proposed for thermal convection at  
high Rayleigh number by Howard (1964) and has received some experimental veri- 
fication for that case from observations by Sparrow, Husar & Goldstein (1  970). 

The interface is symmetric about the mid-plane z = 0 and we shall consider only 
the upper half of the system 0 < z < D. We shall assume that the profiles of T and S 
are independent of horizontal position. At time t = 0 we suppose that the boundary- 
layer thickness is zero and that it grows by diffusion until a buoyant element is 
released a t  t = t , .  The buoyant material in the boundary layer is assumed to be 
swept away instantaneously and the original profiles of T and S restored. These 
profiles are shown on figure I .  The region 0 ,< z ,< z1 corresponds to the diffusive core, 
and above this is the boundary layer. We assume that at  t = 0,  the vertical gradients 
of T and S in the core, Tf and S,d respectively, are constant and that there are steps 
E,ST and &SS in T and S at z = zl. It is then straightforward to show that diffusion 
until time t modifies these profiles to 

[ 1(AT z ) erfc ( 2 1 - 2 )  - -- 1(AT - + z  ) erfc ( & Z + Z )  T(z , t )  = T,d z+-  -- 
2 2Tf 2(K,t)* 2 2T,d 2 ( h T  t)* 

and an exactly analogous expression for S(z,  t ) .  
The assumption of constant gradients of T and S in the core as the initial condition 

is an approximation. The correct initial profiles are those which are the same in the 
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FIGURE 1. The idealized initial T ,  S and p profiles (in density units) of the model of the diffusive 
interface. The region -zl < z < z1 is the diffusive core, in which the gradients of T and S are 
constant. 

core a t  t = t ,  as they were at  t = 0, since we are considering a steady state. The simplest 
way to determine these profiles is to assume them to be linear within 0 < z < zl. 
After diffusion has proceeded for a time t ,  the profiles will have adopted shapes closer 
to  the required repetitive form, and these may be used as the new initial condition 
for a second period t,. I n  this way the required form would be obtained by successive 
approximations. Here we take only the first, linear, approximation. Provided that 
the interface is thick enough so that z1 9 2(KT t,)3, (2.3) shows the resulting error to be 
small except near z = zl. I n  view of the other approximations, such as the neglect of 
any horizontal variations of properties, (2.3) is an adequate representation of the 
exact solution for our purposes. The condition that z1 2(KTt,)* will be examined 
in more detail later (see 5 4). 

The T flux FT is given by the amount of T removed from the boundary layer per 
unit time. This can be written as 

1 "  
FT = t j  (&AT-T(z,t,))dz. 

Provided that z1 >> 2(KTt,)*, a restriction we shall apply from now on, we see that 
* 21 

-F;. = KT T${$ + (AT/2Tf - zl) (nKT t,)-*}. (2.4) 

Similarly, Fs = -K,X${++(AS/~S,~+Z,)  (nKst,)-i}. (2 .5 )  
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The fluxes F$ and F$ through the diffusive core are given by 

F$=KTT,d, F,$= -K,S,d. (2 .6 )  

The model presupposes that the whole system is in a steady state. As a consequence, 
there can be no storage or net loss of T and S from the interface, so the diffusive fluxes 
(2 .6 )  must balance the convective fluxes (2 .4 )  and (2 .5 ) .  This implies that 

We need now to specify the position z = z1 of the outer edge of the diffusive core. 
To do this it is assumed that all and only the fluid with density less than that in the 
mixed layer actively participates in the convection and is excluded from the diffusive 
core. Thus immediately after the release of a buoyant blob, the net density step at the 
edge of the core is zero as shown on figure 1 .  Writing this condition in terms of the steps 
in T and S at the edges of the core at  t = 0,  we have 

ST = SS. (2 .8 )  

One important result follows immediately from this assumption. From (2 .4) - (2 .6)  
we see that the ratio of the mass fluxes 

F,/F, = 74, (2 .9 )  

(2.10) 

(2 .11)  

which is constant and independent of the density ratio R, = AS/AT.  Then (2 .6 )  
implies that 

Further 

and use of ( 2 . 8 )  and (2 .10)  gives the result 

T,d/St = -74. 

z1 = (AT - ST)/2T,d = - ( A S  - SS)/2S,d, 

ST/AT = ( 1  - dR,)/( 1 - 74). (2 .12)  

In order to determine the individual fluxes of T and S it is necessary to establish a 
criterion for the breakdown of the boundary layer. This is a complicated problem as, 
if the upper layer is of infinite depth, the boundary layer is always unst.able. Con- 
sequently, we need to determine the stage at  which the instabilities have grown to 
such a. size that a breakdown of the boundary layer and the release of buoyant 
elements occur. At the large Rayleigh numbers ( 2 O(lOe)) at which the experiments 
have been carried out the convection is intermittent and the release of buoyant 
elements is reminiscent of the collective instabilities observed in high Rayleigh 
number thermal convection (Busse & Whitehead 1974). A plan view of a diffusive 
interface as revealed by a shadowgraph is shown on figure 2 (plate 1) .  Similar collective 
instabilities are clearly visible. 

Foster (1971)  has made numerical calculations of the thermal convection produced 
at high Rayleigh numbers beneath a cooled surface. His results confirm, in general 
terms, the picture presented by Howard ( 1  964) of a periodic breakdown of the boundary 
layer with the release of buoyant elements and its subsequent redevelopment by 
diffusion. We shall apply this model here in order to get estimates of the fluxes. 

We define a time-dependent Rayleigh number R = gSpd;/p, vK, for the boundary 
layer and assume %hat the buoyant element is released when R is greater than some 
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critical value R, = o ( 1 0 3 ) .  Here 6p and dT are appropriate measures, respectively, of 
the density anomaly and the thickness of the boundary layer. We have used the T 
difiusivity in R as this is the higher of the two diffusivities and because T is the de- 
stabilizing agent. 

The T Nusselt number NT is given by 

NT = 2 T f  DlAT,  (2 .13)  

as the T flux into the upper layer is given by F$ [see (2 .6 ) ] .  Use of (2 .7 )  and (2 .11)  

ST = T,d(nK, t*)4.  (2 .14)  
implies that 

Further, we shall specify Sp more closely by writing 

and from ( 2 . 3 )  and the equivalent expression for S(z, t )  we then get 

SpaT = ST( 1 - 74) (KT t,/n)*. (2.15) 

Finally, we need an estimate for d T ,  the boundary-layer thickness. There are two 
boundary-layer length scales associated with the different diffusivities of the two 
components. As the S boundary layer is stable, .the position of the maximum density 
inversion does not occur a t  z = zl, but is displaced outwards by an amount pro- 
portional to (K,t ,) i .  A realistic scale for the combined density profile is 

d,  = (1rlT,t,)4-(lilist*)4 = (nKTt,)a(1 -74). (2 .16)  

In  the limit 7-+ 0, when the diffusion of the S field is unimportant, d ,  = (nK, &)4, 
which is the appropriate scale length for the diffusion of the T boundary layer. When 
7 -+ 1 ,  d ,  -+ 0,  reflecting the fact t,hat the unstable part of the boundary layer is much 
thinner than the individual boundary layers of S and T .  

Substituting for T,d from (2 .14)  and using (2 .16 ) ,  we find 

26T D 
T -  AT d, 

N - - - ( ( 1 - T * ) .  (2 .17)  

If we define the Rayleigh number for the whole upper layer as 

RL = gATD3/2p, vKT, (2 .18)  

we see that 

From (2 .12 ) ,  (2 .17)  and (2 .19)  we find 

and the T flux is given by 

(2.19) 

(2.20) 

(2 .21)  
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The thickness of the diffusive interface can also be determined from the above rela- 
tions. This is a rather imprecisely defined quantity so we shall use a form favoured by 
experimentalists (e.g. Crapper & Linden 1974; Marmorino & Caldwell 1976), namely 

hT = AT/?':. (2.22) 

Equating the fluxes F$ and FT, we get from (2.6) and (2.21) 

(2.23) 

For the sake of making explicit comparison with Marmorino & Caldwell (1 976) we 
shall rewrite (2.23) with the aid of (2.22) in the form 

(2.24) 

3. Time-dependent effects 
It was mentioned in the introduction that all the experiments carried out on a 

diffusive system have been 'run-down' situations. It is of interest, therefore, to 
consider the effects of time dependence on the model described above. A combination 
of the results obtained in 0 2 for the steady state and those derived below should then 
provide a description of a run-down experiment as the system passes through a series 
of quasi-equilibrium states. 

Suppose that all boundaries of the system are impervious to both T and S. Then 
the flux across the interface produces a change in AT (and AS) with time given by 

FT = - +Dd(AT)/dt. (3.1) 

As FT = F$, (2.6) and (2.22) give 

&Dd(AT)/dt = - KT AT/hT, (3.2) 

i.e. hTcc t .  

Hence there is a linear growth of the interface thickness with time. Furthermore, 
(2.21) and (3.1) give (to a good approximation) 

A T K  t-3.  (3.3) 

It is also clear that the density difference across the interface ( A p  = AS - AT)  increases 
with time (i.e. as the convection runs down). For 

d(Ap)/dt = d(AS) /d t+d(AT) /d t  = (Z/D)FT(l-FS/FT) = ( 2 / D ) F p ( l - ~ f )  (3.4) 

by(2.10),thusas7 < l , d (Ap) /d t  > 0. 
If, on the other hand, the top and bottom boundaries are impermeable to S but 

will conduct T (say, for example, when using salt ( S )  and heat (T) as the two com- 
ponents), then (3.1) must be replaced by 

Fs = - +Dd(AS)/dt. (3-5) 
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Let Fl and Fa represent the T fluxes across the bottom and top boundaries, res- 

(3.6) 
pectively. Then 

Dd(AT)/dt = 4 + Fu - 2FT. 

Writing (2.21) as FT = A ( l  -dRP)4(A2')t, 13.7) 

where A = (nR,)-) KT(g/p, vK,)* ( I  - 74)-5, and using (2.9), we find that 

4 As 
dt 3 D 

= - - ( ~ - T ) F & ( ~ + F ~ - ~ F ~ ) .  

Experiments using heat and salt have usually been set up (Turner 1965; Crapper 
1975) by introducing two layers of different salinities into the tank and then applying 
a heat flux from below. Then (3.8) shows that the heat flow FT will increase until 

a t  which point it will remain steady. Substituting (3.9) into (3.6) reveals that 

d(AT)/dt = 0, 

although in the case where F, = 0 the temperatures of both layers increase with time. 
From (3.8) it is possible to  estimate the time t, taken to  reach the steady flux (3.9). 
AS a lower bound we find 

For the kinds of heating rates used by both Turner and Crapper t, N O( 1 hour). 

4. Comparison with experiment 
Experiments have been carried out using heat and salt (Turner 1965; Crapper 

1975; Marmorino & Caldwell 1976) and sugar and salt (Shirtcliffe 1973). Turner and 
Crapper both considered the properties of the convection when a heat flux was 
applied through the bottom boundary of the tank: all other boundaries were insulated. 
Marmorino & Caldwell repeated some of these earlier experiments and conducted 
experiments where heat was also extracted from the top of the upper layer. Shirtcliffe's 
experiments were all 'run down' from an initial state with all boundaries non- 
conductive. Fur the heatlsalt experiments 7 = 0.012 and for the sugar/salt experi- 
ments 7 = 0.33. 

Shirtcliffe (1973) measured profiles of T and S through a sugar/salt diffusive inter- 
face. I n  a 'run-down ' situation he found that the vertical gradients of T and S in 
the interior of the interface were constant, and that these gradients were large enough 
to support, by diffusion alone, the observed fluxes of T and S across the interface. In  
some cases his profiles also show density inversions a t  the edges of the interface, 
consistent with the notion of unstable boundary layers separated by a diffusive core. 
These observations support the idealized model of the interface as discussed in $ 2  
(see figure 1). 

has been measured by all the above-mentioned workers 
For the sugar/salt case Shirtcliffe (1973) found Rf = 0.60 k 0.03 for 1.1 < R, < 2.25, 

The flux ratio Rf = 
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which is to be compared with the predicted value of r4 = 0.577. There is still sub- 
stantial disagreement between the various values of R, measured for the heatlsalt 
system. Turner (1 965) and Crapper (1 975) both found a constant flux ratio 

Rf = 0.15+_0.02 for 2 < R, < 7. 

For R, < 2, the flux ratio is a function of the density ratio R, and Rf --f 1 as R, -+ 1.  
More recently, Marmorino & Caldwell (1976) measured flux ratios as high as 0.4 for 
heatlsalt for R, 2 2 when the heat flux into the bottom of their tank was reduced by 
two orders of magnitude from the values used by Turner and by Crapper (they also 
found R, = 0.15 at equivalent heat fluxes). Even with this uncertainty in the measured 
values of the flux ratio, the smallest value R, = 0.15 is still significantly above that 
predicted by the model r4 = 0.1 1.  

The flux of T through the interface has also been measured by all the above- 
mentioned experimenters. Following Turner (1965), the flux has been non-dimension- 
alized with respect to the flux Fgp through a fictitious solid conducting plane placed 
at the interface, where 

FgP = 0.085 KT(g/po vK,)). (4.1) 

(4.2) Then (2.21) may be written as PT = F*,(R,, r )  FgP, 

where 
1 (1 - T t R , ) +  

F$ = 
(rR,)* 0.085 (1  - d)* ’ (4.3) 

We shall take, in line with Howard’s (1964) original model, R, = 1629. Then (4.3) 
becomes 

Figure 3 shows a plot of (4.4) for heatlsalt: shown for comparison are the data of 
Turner (1 965). The value of r4 is taken to be 0.1 1 ,  which is appropriate for the average 
temperatures and salinities used by Turner in his experiments. The data of Crapper 
(1975) and Marmorino & Caldwell (1976) are consistent with Turner’s data and are 
not included. There is good agreement between the model and the data in the range 
3 < R, 6 7, but the model underestimates the measured fluxes both as Rp+ 1 and 
for R, > 8. Figure 4 shows the equivalent curve for the sugarlsalt case, where r4 = 0.6 
plotted against the data of Shirtcliffe (1973). Again there is good agreement between 
the model and the data for intermediate value of the density ratio 1-2 < R, < 1.65, 
but the model underestimates the flux for values of R, outside that range. 

The comparison between the measurements of the T flux and that predicted by 
the model indicates that there are three regions to consider. For intermediate values 
of R, the model describes the observed fluxes very well and we conclude that the model 
is a good representation of the diffusive interface in that range. A t  high values of R, 
(R, 2 8 for heatlsalt, R, 2 1.7 for sugarlsalt) the model underestimates the T flux. 
In  fact, from (2.21) we see that the model predicts that the flux is zero for 

R, = R: = T-B 

(Re, = 9.1 for heatlsalt, R: = 1.73 for sugarlsalt). For values of R, > R$ a steady- 
state diffusive interface with the double structure described in § 2 cannot be main- 
tained. It is easily seen from (2.12) that for 

R, > RCp, BTIAT < 0, 
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FIGURE 3. The non-dimensional T flux B’; for heat/salt, defined by (4.2), plotted on a log-log 
scale against the density ratio R,. 0, Turner’s (1965) data; -, theoretical curve for heat/salt 
(4.4). 

which implies that  the step in T across the boundary layer is in the opposite sense 
to the step across the interface, i.e. stabilizing. There is experimental evidence that 
diffusive convection occurs for R, > 7-3  (Shirtcliffe 1973)) but clearly the mechanism 
must be different from that described in Q 2, Convection driven by unstable boundary 
layers on either side of the interface will still work when R, > R; but it is not possible 
for the T flux through the diffusive core to balance the (now large) S flux: in other words, 
condition (2.10)) T,d = -r*S,d, can not be satisfied. 

It is of interest to consider the ‘run-down’ sugarlsalt experiment of Shirtcliffe 
(1  973) in view of these remarks. Details of this experiment are given in table 1 of his 
paper. The data were taken over a period of 90 hours, giving six discrete sets of measure- 
ments in that time. In  a ‘run-down’ experiment both Ap and R, increase with time, 
and only the first reading (at 8.2h) has R, < R;. Consequently, by following the 
subsequent development of the system we can see what happens as R, increases beyond 
the value for which the present model is valid. Shirtcliffe measured the T and S 
gradients at the centre of the interface directly and hence the fluxes F& and Fg. 
He found that, as the experiment progressed and R, increased, Rf” = F$/F$ increased 
from 73 (at 8.2 h and 12 h) to unity. Thus, as expected, the balance described by (2.10) 
breaks down for R, > R‘p. Also, both F$ and F$ become greater than FT and Fs, 
respectively, as R, increases beyond R;. Thus there must be a build up of T and S a t  
the edges of diffusive core which cannot be removed by convection as there is in- 
sufficient energy in the T field. Shirtcliffe notes that R, = Fs/FT remains constant 
( =  0.6 = d )  throughout. Thus it appears that the convective boundary layers still 
operate as described in Q 2 to produce a flux ratio R, = r* but that the diffusive core 
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is no longer in balance with them. Equilibrium is lost with the imbalance of fluxes 
and a steady state cannot be achieved. 

The third region of interest concerns the limit R, -+ 1, when the density difference 
across the interface becomes vanishingly small. In this limit the model underestimates 
the T flux €or both the heat/salt and the sugar/salt interface and also does not predict 
the rise in the flux ratio observed in the heatlsalt case. There are a number of reasons 
for this lack cf agreement between the model and the experiments when R, -+ 1, and 
it is instructive to consider them in detail. First, the model, which supposes that 
there are constant gradients in the diffusive core, is inappropriate in this limit. From 
(2.12) and (2.11) we see that the thickness of the core z1 tends to zero as Rp+ 1. Con- 
sequently, the assumption that z1 @ 2(7rK, t*)4 used in deriving (2.4) is not satisfied. 
Typical values of t ,  appropriate to laboratory conditions are approximately 30 s for 
heat/salt and 60s €or sugar/salt. Thus we require that the heat/salt interface be at 
least 1 cm thick and the sugar/salt interface be 0.1 cm thick for the approximations 
used in deriving (2.4) to be valid. Measurements of interface thickness made by 
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Marmorino & Caldwell (1976) and Shirtcliffe (1973) show that these conditions are 
satisfied for the intermediate range of R, where the agreement between the model 
and the data is satisfactory. 

For the heatlsalt interface there are other processes, not taken into account in 
the model, which appear to be important at low R,. In  all these experiments the 
two-layer system is set up and then driven towards R, = 1 by heating the lower layer 
and (sometimes) cooling the upper layer. This imposed heat flux alsogenerates thermals 
at the lower and upper boundaries of the tank which contribute to the convective 
motions in the layers generated by the interface itself. If these additional convective 
motions affect the interface then the transport through the interface may be quite 
different to  the transport through an isola6ed diffusive interface. There are some 
indications that these convective motions may be responsible for increasing the fluxes 
through the interface and increasing the A ux ratio as R, + 1. Marmorino & Caldwell 
(1976) found that the flux ratio was a function of the imposed heat flux for fixed R,, 
and all the above experimenters report that the interface migrated vertically during 
the course of an experiment with the rate of migration increasing as R,+ 1.  Both of 
these observations are consistent with the idea proposed by Linden (1  974) that the 
convective motions can entrain fluid wross the interface. This effect will be largest 
when the stability of the interface is smallest, i.e. as R, + 1, and Linden (1974) showed 
that the increase in flux ratio as R,+ 1 measured by Turner (1965) is consistent with 
this idea. 

Entrainment increases as the Froude number Fr of the interface increases. Here 

where u and 1 are typical velocity and length scales of the motion near the interface. 
For fixed R,, A p a  A T  and U K  (AT)$. Consequently, Frcc (AT)-i'aa F$A,  and as 
the heat flux FT decreases the Froude number increases, leading to an increased 
possibility of entrainment. Thus the larger values of Rf measured by Marmorino & 
Caldwell (1 976) compared with those measured by Turner (1965) and Crapper (1 975) 
for the same R, are consistent with the idea that entrainment is producing a significant 
transport of heat and salt. Indeed, it seems likely that the interaction of the convective 
motions with the interface is responsible for the discrepancy between the predicted 
value R, = 0.11 and the observed value R, = 0.15. 

In  the case of the sugarlsalt interface, calculations (Linden 1974) show that it is 
unlikely that entrainment across the interface is significant. This is borne out by the 
fact that the measured flux ratio, in this case, is in agreement with the predicted value 
and there is no evidence that it increases a t  low values of R,. It is, of course, still true 
that when R, = 1 and the whole system mixes, Rf = 1, but for the smallest value of 
R, at which flux measurements have so far been obtained (R, = 1.05) no evidence of 
increasing R, is found. An additional complicating feature at  low R, is the presence 
of a systematic interfacial wave motion which is coupled to the large-scale convection 
in the layers (Turner 1974). This causes significant horizontal variations in the thickness 
of the interface and may produce an increase in the flux due to a net increase in the 
local vertical gradients of T and 8. The dynamics and effect of this wave motion are 
not understood and are in need of further experimental and theoretical study. 
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FIGURE 5. A log-log plot of h,Fk (gcm2/s)f against 1 -r iRp. The data points were taken from 
Marmorino & Caldwell (1976) by reading off pairs of points (Rp, F,) along the contours of h, 
from figure 6 of their paper. The value of 7.a used is 0.11. The solid line is the model prediction 
(2.24) with values of the molecular quantities appropriate to heat and salt. 

Measurements of the thickness of a heat/salt diffusive interface were made by 
Marmorino & Caldwell (1976). They determined a measure of the thickness from 
temperature-depth profiles made during their experiments, which can readily be 
compared with h, = AT/T$ as defined by (2.22). The most convenient form for 
comparison is that of (2.24)) which shows that h, increases as F, decreases for a fixed 
density ratio R,, and that h, increases as R, increases for a fixed T flux FT. These 
trends were also found by Marmorino & Caldwell (1976). Their data are replotted on 
figure 5, which shows a log-log plot of F$ hT against 1 - d R , .  The data were read at  a 
number of points on their original figure. Also shown is a straight line representing 
the model prediction determined from (2.241, both the slope and the intercept given 
by that equation being presented without adjustment. Although the data are some- 
what scattered there is good agreement between the predicted and observed interface 
scales. 

There is little documentation of the time-dependent features of a diffusive interface. 
Shirtcliffe (1973) records T as a function of time as the sugar/salt system runs down. 
He finds that although the data fit the form ATK (t - to ) -y ,  where to is a time origin, 
y is in general much less than the value y = 3 expected from (3.3). This discrepancy 
may be due to the fact that the validity of (3.3) depends on 1 - d R p  being a slowly 
varying quantity, which is not the case in Shirtcliffe's experiments. 

Information concerning the thickness of a diffusive interface as a function of time 
is also lacking. Some trends can be inferred from the data presented in table 1 of 
Shirtcliffe's (1973) paper, using the definition h, = AT/Tf as in $2.  The values of 
h, determined in this way are plotted against time on figure 6. In  the early stages 
of the experiment the growth of the interface with time is linear as described by (3.2). 
At later stages the growth is slower than linear but at  this point the interface was an 
appreciable fraction of the tank depth so these values should be regarded with caution. 
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Time ( h )  

FIGURE 6. The thickness of the interface hT(cm), taken from the data of Shirtcliffe (1973), plotted 
against the time t (h). Initially, the thickness is observed to increase linearly with time (as em- 
phasized by the line drawn through the first few data points). At a later stage in the experiment 
the growth is slower. 

5. Conclusions 
In  an attempt to make a direct comparison with experiments on the diffusive form 

of double-diffusive convection, a model of the diffusive interface at  high Rayleigh 
number has been proposed. Recognizing the similarities between this convective flow 
and that above a heated horizontal boundary in a fluid at  high Rayleigh number, 
the model of Howard (1 964) for the latter situation has been extended to the two- 
component case. The model is based on the assumption that the interface has a 
diffusive core bounded above and below by unstable boundary layers from which 
thermal elements arise. Allied to this is the notion that a time-dependent experiment 
can be considered as running down through a sequence of equilibrium states, each of 
which may be described by a steady-state theory. 

The model provides estimates of the fluxes of the two components across the 
interface and %he thickness of the interface in terms of the difference in value of the 
two components in the two layers and the molecular properties of the system. It is 
predicted that the magnitudes of the fluxes decrease with increasing density ratio 
R,, whilst the ratio R, of the buoyancy fluxes is constant at  a value r4 = (Ks/KT)4. 
Comparison with experiment shows that over an intermediate range of density ratios 
R, the model provides a reasonable description of the observed transports across the 
interface and of the interface thickness. It is also predicted that for values of R, 
greater than a critical value R; = r-4, which depends only on the molecular diffusivities 
of the two components, a steady-state interface cannot exist. One feature of this high 
R, limit is revealed by (2.23), which shows that the interface thickness hT+m as 
R, --f R:. A thickening of the interface for R, > 7 (R; = 9.1 for heat/salt) with a ten- 
dency for an ‘intermediate layer ’ to form was reported by Turner (1965). The form the 
interface takes when R, > R; is not well understood and requires further investigation. 

As R, -+ 1 and the density step across the interface becomes small the model under- 
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estimates the individual transports. In  the heat/salt case it appears that the additional 
flux may be due to entrainment produced by the interaction of the convective motions 
with the interface. However, i t  seems unlikely that entrainment is important for the 
sugarlsalt interface in %he parameter range so far investigated, and the reason for the 
large ffuxes is not known. 

The possibility that entrainment may be important in certain circumstances 
highlights some of the difficulties in carrying out experiments of this kind. In  the 
heatlsalt experiments migration of the interface in some cases was reported by all 
the experimenters (Turner 1965; Crapper 1975; Marmorino & Caldwell 1976). This 
migration results from a net transport of fluid across the interface caused by an 
imbalance in the entrainment rates into the upper and lower layers. Both Turner and 
Crapper applied a heat flux at the bottom of the tank but had an insulating lid on the 
top. Consequently, tihe motions in the lower layer were more vigorous than those in 
the upper layer and the entrainment into the lower layer was larger than that into 
the upper layer. As a result the interface migrated upwards (Crapper 1975). On the 
other hand, Marmorino & Caldwell, who carried out experiments with heat removed 
at the top at the same rate as it was added at the bottom, also observed migration 
of the interface. Even in these symmetric conditions with the interface mid-way 
between the upper and lower boundaries, the equilibrium is unstable. If the interface 
is moved upwards, say, a small amount whilst the same flux is maintained through the 
system, the velocities in the deeper layer must increase. Hence entrainment into the 
lower layer will increase, continuing the upward migration of the interface. This means 
that at  low density ratios it will be very difficult to maintain the system in a quasi- 
steady state. 

This work was finally completed whilst we were visiting the Research School of 
Earth Sciences, The Australian National University. We should like to thank 
Professor J. S. Turner for inviting us to work there and for skilfully arranging for 
our visits to overlap. 
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FIGURE 2 .  A shadowgraph of tlie plan view of a sugar/salt diffiisive 
iritcrfacc> showing the collectivc instabilities. 
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